Rough singular integrals on product spaces
نویسندگان
چکیده
where, p.v. denotes the principal value. It is known that if Φ is of finite type at 0 (see Definition 2.2) and Ω ∈ 1(Sn−1), then TΦ,Ω is bounded on Lp for 1 1. Subsequently, the Lp (1< p <∞) boundedness of TΦ,Ω was established under conditions much weaker than Ω ∈ Lq(Sn−1) [1, 6]. In particular, Al-Qassem et al. [1] established the Lp boundedness of TΦ,Ω under the condition that the function Ω belongs to the block space B 0,0 q (Sn−1) introduced by Jiang and Lu in (see [14]). In fact, they proved the following theorem.
منابع مشابه
Parabolic Marcinkiewicz integrals on product spaces
In this paper, we study the $L^p$ ($1
متن کاملRough Singular Integrals Along Submanifolds of Finite Type on Product Domains
We establish the L boundedness of singular integrals on product domains with rough kernels in L(logL) and are supported by subvarieties.
متن کاملRough Marcinkiewicz Integrals On Product Spaces
In this paper, we establish an Lp boundedness result of a class of Marcinkiewicz integral operators on product domains with rough kernels.
متن کاملA Class of Maximal Operators with Rough Kernel on Product Spaces
In this note the authors prove the Lp(Rn×Rm)-boundedness for a class of maximal singular integral operators with rough kernel on product spaces. This extends a result obtained by Chen and Wang in 1992.
متن کاملL Bounds for Singular Integrals and Maximal Singular Integrals with Rough Kernels
Convolution type Calderón-Zygmund singular integral operators with rough kernels p.v. Ω(x)/|x| are studied. A condition on Ω implying that the corresponding singular integrals and maximal singular integrals map L → L for 1 < p < ∞ is obtained. This condition is shown to be different from the condition Ω ∈ H1(Sn−1).
متن کاملLp BOUNDS FOR SINGULAR INTEGRALS AND MAXIMAL SINGULAR
Convolution type Calderr on-Zygmund singular integral operators with rough kernels p.v. (x)=jxj n are studied. A condition on implying that the corresponding singular integrals and maximal singular integrals map L p ! L p for 1 < p < 1 is obtained. This condition is shown to be diierent from the condition 2 H 1 (S n?1).
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Int. J. Math. Mathematical Sciences
دوره 2004 شماره
صفحات -
تاریخ انتشار 2004