Rough singular integrals on product spaces

نویسندگان

  • Ahmad Al-Salman
  • Hussain Mohammed Al-Qassem
چکیده

where, p.v. denotes the principal value. It is known that if Φ is of finite type at 0 (see Definition 2.2) and Ω ∈ 1(Sn−1), then TΦ,Ω is bounded on Lp for 1 1. Subsequently, the Lp (1< p <∞) boundedness of TΦ,Ω was established under conditions much weaker than Ω ∈ Lq(Sn−1) [1, 6]. In particular, Al-Qassem et al. [1] established the Lp boundedness of TΦ,Ω under the condition that the function Ω belongs to the block space B 0,0 q (Sn−1) introduced by Jiang and Lu in (see [14]). In fact, they proved the following theorem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parabolic Marcinkiewicz integrals on product spaces

‎In this paper‎, ‎we study the $L^p$ ($1

متن کامل

Rough Singular Integrals Along Submanifolds of Finite Type on Product Domains

We establish the L boundedness of singular integrals on product domains with rough kernels in L(logL) and are supported by subvarieties.

متن کامل

Rough Marcinkiewicz Integrals On Product Spaces

In this paper, we establish an Lp boundedness result of a class of Marcinkiewicz integral operators on product domains with rough kernels.

متن کامل

A Class of Maximal Operators with Rough Kernel on Product Spaces

In this note the authors prove the Lp(Rn×Rm)-boundedness for a class of maximal singular integral operators with rough kernel on product spaces. This extends a result obtained by Chen and Wang in 1992.

متن کامل

L Bounds for Singular Integrals and Maximal Singular Integrals with Rough Kernels

Convolution type Calderón-Zygmund singular integral operators with rough kernels p.v. Ω(x)/|x| are studied. A condition on Ω implying that the corresponding singular integrals and maximal singular integrals map L → L for 1 < p < ∞ is obtained. This condition is shown to be different from the condition Ω ∈ H1(Sn−1).

متن کامل

Lp BOUNDS FOR SINGULAR INTEGRALS AND MAXIMAL SINGULAR

Convolution type Calderr on-Zygmund singular integral operators with rough kernels p.v. (x)=jxj n are studied. A condition on implying that the corresponding singular integrals and maximal singular integrals map L p ! L p for 1 < p < 1 is obtained. This condition is shown to be diierent from the condition 2 H 1 (S n?1).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Math. Mathematical Sciences

دوره 2004  شماره 

صفحات  -

تاریخ انتشار 2004